GOAL Use properties of special pairs of angles.

Vocabulary

Theorem 2.3 Right Angles Congruence Theorem: All right angles are congruent.

Theorem 2.4 Congruent Supplements Theorem: If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.

Theorem 2.5 Congruent Complements Theorem: If two angles are complementary to the same angle (or to congruent angles), then they are congruent.

Postulate 12 Linear Pair Postulate: If two angles form a linear pair, then they are supplementary.

Theorem 2.6 Vertical Angles Congruence Theorem: Vertical angles are congruent.

EXAMPLE 1 Find angle measures

Complete the statement given that $m \angle AGF = 90^{\circ}$.

a.
$$m \angle CGD = \underline{?}$$

b. If
$$m \angle BGF = 113^{\circ}$$
, then $m \angle DGE = \underline{?}$.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Solution

- **a.** Because $\angle CGD$ and $\angle AGF$ are vertical angles, $\angle CGD \cong \angle AGF$. By the definition of congruent angles, $m\angle CGD = m\angle AGF$. So, $m\angle CGD = 90^{\circ}$.
- **b.** By the Angle Addition Postulate, $m \angle BGF = m \angle AGF + m \angle AGB$. Substitute to get $113^{\circ} = 90^{\circ} + m \angle AGB$. By the Subtraction Property of Equality, $m \angle AGB = 23^{\circ}$. Because $\angle DGE$ and $\angle AGB$ are vertical angles, $\angle DGE \cong \angle AGB$. By the definition of congruent angles, $m \angle DGE = m \angle AGB$. So, $m \angle DGE = 23^{\circ}$.

Exercises for Example 1

Complete the statement given that $m \angle BHD = m \angle CHE = 90^{\circ}$.

1.
$$m \angle AHG = \underline{?}$$

2.
$$m \angle CHA = ?$$

3. If
$$m \angle CHD = 31^\circ$$
, then $m \angle EHF = \underline{?}$.

4. If
$$m \angle BHG = 125^{\circ}$$
, then $m \angle CHF = \underline{?}$.

5. If
$$m \angle EHF = 38^{\circ}$$
, then $m \angle BHC = \underline{?}$.

LESSON 2.7

Study Guide continued For use with pages 122-131

Find angle measures **EXAMPLE 2**

If $m \angle BGD = 90^{\circ}$ and $m \angle CGD = 26^{\circ}$, find $m \angle 1$, $m \angle 2$, and $m \angle 3$.

Solution

 $\angle BGC$ and $\angle CGD$ are complementary. So, $m \angle 1 = 90^{\circ} - 26^{\circ} = 64^{\circ}$.

 $\angle AGB$ and $\angle BGD$ are supplementary. So, $m \angle 2 = 180^{\circ} - 90^{\circ} = 90^{\circ}$.

 $\angle AGF$ and $\angle CGD$ are vertical angles. So, $m \angle 3 = 26^{\circ}$.

Exercises for Example 2

In Exercises 6 and 7, refer to Example 2.

6. Find $m \angle FGE$.

7. Find $m \angle DGE$.

Use algebra **EXAMPLE 3**

Solve for x in the diagram.

Solution

Because $\angle AEB$ and $\angle BEC$ form a linear pair, the sum of their measures is 180° . So, you can solve for x as follows:

(2x + 3) + 25 = 180Definition of supplementary angles.

$$2x + 28 = 180$$
 Combine like terms.

$$2x = 152$$
 Subtract 28 from both sides.

$$x = 76$$
 Divide each side by 2.

Exercises for Example 3

Solve for x in the diagram.

