GOAL

Find and compare slopes of lines.

Vocabulary

The **slope** (m) of a nonvertical line is the ratio of vertical change (rise) to horizontal change (run) between any two points on the line.

$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Postulate 17 Slopes of Parallel Lines: In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.

Postulate 18 Slopes of Perpendicular Lines: In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Horizontal lines are perpendicular to vertical lines.

EXAMPLE 1

Find slopes of lines in a coordinate plane

Find the slope of line q and line r.

Solution

Slope of line
$$q$$
: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 5}{8 - 5} = \frac{2}{3}$

Slope of line
$$r$$
: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 5}{5 - 0} = 0$

Exercise for Example 1

1. In Example 1, find the slope of $\lim p$ and $\lim s$.

EXAMPLE 2

Identify parallel lines

Find the slope of each line. Is $a \parallel b$? Solution

Find the slope of a through (-4, 6) and (0, 3).

$$m_a = \frac{3-6}{0-(-4)} = -\frac{3}{4}$$

Find the slope of b through (1, 7) and (6, 2).

$$m_b = \frac{2-7}{6-1} = -1$$

Compare the slopes. Because a and b have different slope, they are not parallel.

LESSON 3.4

Study Guide continued For use with pages 171–179

Exercises for Example 2

Find the slope of each line. Is $a \parallel b$?

2.

3.

Draw a perpendicular line

Line k passes through (-1, -4) and (3, 6). Graph the line perpendicular to k that passes through the point (-4, 3).

Solution

STEP 1 Find the slope m_1 of line k through (-1, -4) and (3, 6).

$$m_1 = \frac{6 - (-4)}{3 - (-1)} = \frac{10}{4} = \frac{5}{2}$$

STEP 2 Find the slope m_2 of a line perpendicular to k. Use the fact that the product of the slopes of two perpendicular lines is -1.

$$\frac{5}{2} \cdot m_2 = -1$$

$$m_2 = -\frac{2}{5}$$

STEP 3 Use the rise and run to graph the line.

- **4.** Line *j* passes through (-4, 2) and (6, 0). Graph the line perpendicular to *j* that passes through the point (0, -4).
- **5.** Line *n* passes through (-2, 3) and (5, -1). Graph the line perpendicular to *n* that passes through the point (-6, -1).