Study Guide For use with pages 180-187

GOAL

Find equations of lines.

Vocabulary

The general form of a linear equation in **slope-intercept form** is y = mx + b, where m is the slope and b is the y-intercept.

A linear equation written as Ax + By = C, where A and B are not both zero, is written in standard form.

Write an equation of a parallel line **EXAMPLE 1**

Write an equation of the line passing through the point (3, 4) that is parallel to the line with the equation y = -4x + 5.

STEP 1 Find the slope m. The slope of a line parallel to y = -4x + 5 is the same as the given line, so the slope is -4.

STEP 2 Find the y-intercept b by using m = -4 and (x, y) = (3, 4).

$$y = mx + b$$

y = mx + b Use slope-intercept form.

$$4 = -4(3) + 6$$

4 = -4(3) + b Substitute for x, y, and m.

$$16 = b$$

Solve for *b*.

Because m = -4 and b = 16, an equation of the line is y = -4x + 16.

Write an equation of a perpendicular line **EXAMPLE 2**

Write an equation of the line p passing through the point (6, -3) that is perpendicular to the line q with the equation y = 4x - 7.

STEP 1 Find the slope m of line p. Line q has a slope of 4.

$$4 \cdot m = -1$$

The product of the slopes of \perp lines is -1.

$$m=-\frac{1}{4}$$

 $m = -\frac{1}{4}$ Divide each side by -2.

STEP 2 Find the *y*-intercept *b* by using $m = -\frac{1}{4}$ and (x, y) = (8, -3).

$$y = mx + t$$

y = mx + b Use slope-intercept form.

$$-3 = -\frac{1}{4}(8) + i$$

 $-3 = -\frac{1}{4}(8) + b$ Substitute for x, y, and m.

$$-1 = b$$

Solve for *b*.

Because
$$m = -\frac{1}{4}$$
 and $b = -1$, an equation of line p is $y = -\frac{1}{4}x - 1$.

69

LESSON 3.5

Study Guide continued

For use with pages 180-187

Exercises for Examples 1 and 2

Write an equation of the line that passes through point P and is parallel to the line with the given equation.

1.
$$P(10, 3), y = x - 12$$

2.
$$P(-5, 2), y = -x - 9$$

1.
$$P(10, 3), y = x - 12$$
 2. $P(-5, 2), y = -x - 9$ **3.** $P(-1, 2), y = \frac{2}{3}x - 2$

Write an equation of the line that passes through point P and is perpendicular to the line with the given equation.

4.
$$P(8,7), y = -x + 3$$

4.
$$P(8,7), y = -x + 3$$
 5. $P(-4,5), y = 2x - 6$ **6.** $P(2,-3), y = \frac{4}{7}x + 2$

6.
$$P(2, -3), y = \frac{4}{7}x + 2$$

EXAMPLE 3

Graph a line with equation in standard form

Graph
$$2x + 3y = 18$$
.

Solution

STEP 1 Find the intercepts.

To find the *x*-intercept, let y = 0.

$$2x + 3y = 18$$

$$2x + 3(0) = 18$$

$$x = 9$$

To find the *y*-intercept, let x = 0.

$$2x + 3y = 18$$

$$2(0) + 3y = 18$$

$$y = 6$$

STEP 2 Graph the line.

The line intercepts the axes at (9, 0)and (0, 6). Graph these points, then draw a line through the points.

Exercises for Example 3

Graph the equation.

7.
$$5x + 2y = 20$$

8.
$$x - 6y = 12$$

7.
$$5x + 2y = 20$$
 8. $x - 6y = 12$ **9.** $7x + 5y = -14$