GOAL Classify triangles and find measures of their angles.

Vocabulary

A triangle is a polygon with three sides.

A scalene triangle has no congruent sides.

An **isosceles triangle** has at least two congruent sides.

An equilateral triangle has three congruent sides.

An acute triangle has three acute angles.

A right triangle has one right angle.

An **obtuse triangle** has one obtuse angle.

An equiangular triangle has three congruent angles.

When the sides of a polygon are extended, other angles are formed. The original angles are the **interior angles**. The angles that form linear pairs with the interior angles are the **exterior angles**.

Theorem 4.1 Triangle Sum Theorem: The sum of the measures of the interior angles of a triangle is 180°.

Theorem 4.2 Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Corollary to the Triangle Sum Theorem: The acute angles of a right triangle are complementary.

EXAMPLE 1

Classify triangles by sides and by angles

Classify the triangle by its sides and by its angles.

a

b.

Solution

- **a.** Triangle DEF has one obtuse angle and no congruent sides. So, $\triangle DEF$ is an obtuse scalene triangle.
- **b.** Triangle ABC has one right angle and two congruent sides. So, $\triangle ABC$ is a right isosceles triangle.

LESSON 4.1

Study Guide continued For use with pages 216-224

Exercises for Example 1

Classify the triangle by its sides and by its angles.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

Find angle measures

a. Find $m \ge BAC$ and $m \ge BCA$.

b. Find $m \ge BCD$ and $m \ge ABC$.

Solution

a. $(4x - 5)^{\circ} + (3x + 11)^{\circ} = 90^{\circ}$

Use Corollary to the Triangle Sum Theorem.

$$x = 12$$
 Solve for x .

So,
$$m \ge BCA = (4x - 5)^\circ = (4 \cdot 12 - 5)^\circ = 43^\circ$$
 and $m \ge BAC = (3x + 11)^\circ = (3 \cdot 12 + 11)^\circ = 47^\circ$.

b. $(5x - 2)^{\circ} = 2x^{\circ} + 76^{\circ}$

Use Exterior Angle Theorem.

$$x = 26$$

Solve for *x*.

So,
$$m \ge BCD = (5x - 2)^{\circ} = (5 \cdot 26 - 2) = 128^{\circ}$$
 and $m \ge ABC = 2x^{\circ} = 2(26)^{\circ} = 52^{\circ}$.

Exercises for Example 2

- **4.** Find $m \ge ABD$ and $m \ge BDC$.
- **5.** Find $m \ge CAB$ and $m \ge CBA$.

