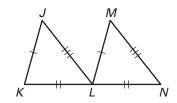
Study Guide For use with pages 233–239

GOAL Use the side lengths to prove triangles are congruent.

Vocabulary

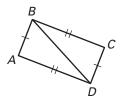

Postulate 19 Side-Side (SSS) Congruence Postulate: If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

EXAMPLE 1 Use the SSS Congruence Postulate

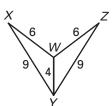
Prove that $\triangle JKL \cong \triangle MLN$.

Solution

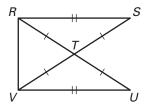
The marks on the diagram show that $\overline{JK} \cong \overline{ML}$, $\overline{KL} \cong \overline{LN}$, and $\overline{JL} \cong \overline{MN}$.

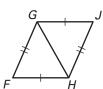

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

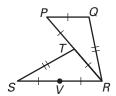
So, by the SSS Congruence Postulate, $\triangle JKL \cong \triangle MLN$.

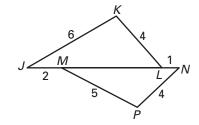

Exercises for Example 1

Decide whether the congruence statement is true. Explain your reasoning.


1. $\triangle ABD \cong \triangle CDB$

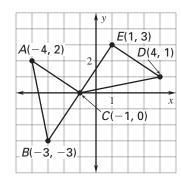

2. $\triangle XWY \cong \triangle WZY$


3. $\triangle RST \cong \triangle VUT$


4. $\triangle FGH \cong \triangle JHG$

5. $\triangle PQR \cong \triangle RTS$

6. $\triangle JKL \cong \triangle MPN$



LESSON 4.3

Study Guide continued For use with pages 233-239

Congruent triangles in a coordinate plane **EXAMPLE 2**

Use the SSS Congruence Postulate to show that $\triangle ABC \cong \triangle CDE$.

Solution

Use the Distance Formula to show that corresponding sides are the same length.

$$AB = \sqrt{(-3 - (-4))^2 + (-3 - 2)^2}$$
$$= \sqrt{1^2 + (-5)^2}$$
$$= \sqrt{26}$$

$$CD = \sqrt{(4 - (-1))^2 + (1 - 0)^2}$$
$$= \sqrt{5^2 + 1^2}$$
$$= \sqrt{26}$$

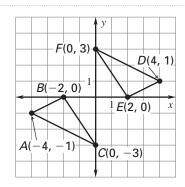
So,
$$AB = CD$$
, and hence $\overline{AB} \cong \overline{CD}$.

$$BC = \sqrt{(-1 - (-3))^2 + (0 - (-3))^2}$$
$$= \sqrt{2^2 + 3^2}$$
$$= \sqrt{13}$$

$$DE = \sqrt{(1-4)^2 + (3-1)^2}$$
$$= \sqrt{(-3)^2 + 2^2}$$
$$= \sqrt{13}$$

So,
$$BC = DE$$
, and hence $\overline{BC} \cong \overline{DE}$.

$$CA = \sqrt{(-4 - (-1))^2 + (2 - 0)^2}$$
$$= \sqrt{(-3)^2 + 2^2}$$
$$= \sqrt{13}$$


$$EC = \sqrt{(-1-1)^2 + (0-3)^2}$$
$$= \sqrt{(-2)^2 + (-3)^2}$$
$$= \sqrt{13}$$

So,
$$CA = EC$$
, and hence $\overline{CA} \cong \overline{EC}$.

So, by the SSS Congruence Postulate, you know that $\triangle ABC \cong \triangle CDE$.

Exercise for Example 2

7. Prove that $\triangle ABC \cong \triangle DEF$.

