GOAL

Use sides and angles to prove congruence.

Vocabulary

In a right triangle, the sides adjacent to the right angle are called the legs.

The side opposite the right angle is called the **hypotenuse** of the right triangle.

Postulate 20 Side-Angle-Side (SAS) Congruence Postulate: If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

Theorem 4.5 Hypotenuse-Leg Congruence Theorem: If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

EXAMPLE 1

Use the SAS Congruence Postulate

Prove that $\triangle ABC \cong \triangle DEF$.

Solution

The marks on the diagram show that $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\geq B \cong \geq E$. So, by the SAS Congruence Postulate, $\triangle ABC \cong \triangle DEF$.

Exercises for Example 1

Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

2. $\triangle NKJ$, $\triangle LKM$

1. $\triangle PQT$, $\triangle RQS$

3. $\triangle WXY$, $\triangle ZXY$

Use the Hypotenuse-Leg Theorem EXAMPLE 2

Write a proof.

GIVEN: $\overline{AB} \cong \overline{DC}$, $\overline{BA} \Psi \overline{AC}$, $\overline{CD} \Psi \overline{DB}$

PROVE: $\triangle ABC \cong \triangle DCB$

Solution

Redraw the triangles so they are side by side with the corresponding parts in the same position. Mark the given information in the diagram.

Statements

- **1.** $\overline{BA} \ \Psi \overline{AC}, \overline{CD} \ \Psi \overline{DB}$
- **2.** $\geq A$ and $\geq D$ are right angles.
- **3.** $\triangle ABC$ and $\triangle DCB$ are right triangles.
- **H 4.** $\overline{CB} \cong \overline{BC}$
- L 5. $\overline{AB} \cong \overline{DC}$
 - **6.** $\triangle ABC \cong \triangle DCB$

Reasons

- 1. Given
- **2.** Definition of Ψ lines
- **3.** Definition of a right triangle
- **4.** Reflexive Property of Congruence
- **5.** Given
- **6.** HL Congruence Theorem

Exercises for Example 2

Write a proof.

4. GIVEN: $\overline{AB} \cong \overline{DB}$, $\overline{BC} \Psi \overline{AD}$

PROVE: $\triangle ABC \cong \triangle DBC$

5. GIVEN: $m \ge JKL = m \ge MLK = 90^{\circ}$

$$\overline{JL} \cong \overline{MK}$$

PROVE: $\overline{JK} \cong \overline{ML}$

