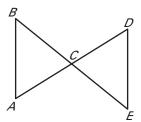
GOAL

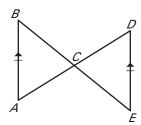
Use congruent triangles to prove corresponding parts congruent.

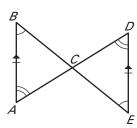

EXAMPLE 1

Identify congruent triangles

Explain how you can use the given information and congruent triangles to prove the statement.

GIVEN:
$$\overline{AB} \Sigma \overline{DE}, \overline{AB} \cong \overline{DE}$$

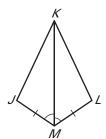

PROVE: C is the midpoint of \overline{BE} .


Solution

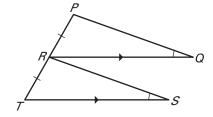
If you can show that $\triangle ABC \cong \triangle DEC$, you will know that C is the midpoint of \overline{BE} . First, copy the diagram and mark the given information. Then add the information that you can deduce. In this case, $\ge B \cong \ge E$ and $\ge A \cong \ge D$ by the Alternate Interior Angles Theorem.

Mark given information.

Add deduced information



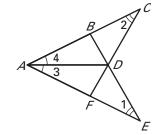
Two angle pairs and the included sides are congruent, so by the ASA Congruence Postulate, $\triangle ABC \cong \triangle DEC$. Because corresponding parts of congruent triangles are congruent, $\overline{BC} \cong \overline{CE}$. By the definition of midpoint, C is the midpoint of \overline{BE} .


Exercises for Example 1

Tell which triangles you can show are congruent in order to prove the statement. What postulate or theorem would you use?

$$1. \ \overline{JK}\cong \overline{LK}$$

2.
$$\geq RPQ \cong \geq TRS$$


LESSON 4.6 **Study Guide** continued For use with pages 256–263

EXAMPLE 2

Plan a proof involving pairs of triangles

Use the given information to write a plan for a proof.

GIVEN: $\geq 1 \cong \geq 2, \geq 3 \cong \geq 4$ **PROVE:** $\triangle DEF \cong \triangle DCB$

Solution

In $\triangle DEF$ and $\triangle DCB$, you know $\ge 1 \cong \ge 2$. If you can show that $\ge EDF \cong \ge CDB$ and $\overline{ED} \cong \overline{CD}$, you can use the SAS Congruence Postulate.

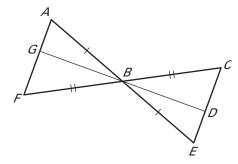
Because $\geq EDF$ and $\geq CDB$ are vertical angles, $\geq EDF \cong \geq CDB$ by the Vertical Angles Theorem.

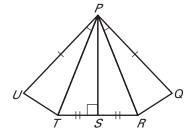
To prove that $\overline{ED} \cong \overline{CD}$, you can first prive that $\triangle AED \cong \triangle ACD$. You are given $\ge 1 \cong \ge 2$ and $\ge 3 \cong \ge 4$. $\overline{AD} \cong \overline{AD}$ by the Reflexive Property. You can use the ASA Congruence Postulate to prove that $\triangle AED \cong \triangle ACD$.

Plan for Proof: Use the ASA Congruence Postulate to prove that $\triangle AED \cong \triangle ACD$. Then state that $\overline{DE} \cong \overline{DC}$ because corresponding parts of congruent triangles are congruent. Use the ASA Congruence Postulate to prove that $\triangle DEF \cong \triangle DCB$.

Exercises for Example 2

Use the diagram and the given information to write a plan for a proof.


3. GIVEN:
$$\overline{AB} \cong \overline{EB}, \overline{FB} \cong \overline{CB}$$


PROVE:
$$\overline{BG} \cong \overline{BD}$$

4. GIVEN:
$$\overline{RS} \cong \overline{ST}$$
, $\overline{PU} \cong \overline{PQ}$

$$\geq \mathit{UPT} \cong \; \geq \mathit{QPR}$$

PROVE:
$$\triangle PTU \cong \triangle PRQ$$

