GOAL Use theorems about isosceles and equilateral triangles.

Vocabulary

When an isosceles triangle has exactly two congruent sides, these two sides are the **legs**. The angle formed by the legs is the **vertex angle**. The third side is the **base** of the isosceles triangle. The two angles adjacent to the base are called **base angles**.

Theorem 4.7 Base Angles Theorem: If two sides of a triangle are congruent, then the angles opposite them are congruent.

Theorem 4.8 Converse of Base Angles Theorem: If two angles of a triangle are congruent, then the sides opposite them are congruent.

Corollary to the Base Angles Theorem: If a triangle is equilateral, then it is equiangular.

Corollary to the Converse of Base Angles Theorem: If a triangle is equiangular, then it is equilateral.

EXAMPLE 1 Identify congruent angles

In the diagram, $\overline{RT} \cong \overline{ST}$. Name two congruent angles.

Solution

 $\overline{RT} \cong \overline{ST}$, so by the Base Angles Theorem, $\geq R \cong \geq S$.

EXAMPLE 2 Find measures in a triangle

Find AB and AC in the triangle at the right.

Solution

The diagram shows that $\triangle ABC$ is equiangular. Therefore, by the Corollary to the Converse of Base Angles Theorem, $\triangle ABC$ is equilateral. So, AB = BC = AC = 11.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Exercises for Examples 1 and 2

Use the information in the diagram to find the given values.

- **1.** Find *WY*.
- **2.** Find $m \ge WXY$.

LESSON 4.7

Study Guide continued For use with pages 264–270

EXAMPLE 3

Use isosceles and equilateral triangles

In the diagram, $m \ge DEF = 90^\circ$. Find the values of x and y.

Solution

STEP 1 Find the value of x. Because $\triangle DEG$ is equilateral, it is also equiangular, and $m \ge GDE = m \ge DEG = x^{\circ}$. So, by the Triangle Sum Theorem, $3x^{\circ} = 180^{\circ}$, and x = 60.

STEP 2 Find the value of y. Because $\geq GEF \cong \geq GFE$, $\overline{GE} \cong \overline{GF}$ by the Converse of Base Angles Theorem, so GE = 3. Because $\triangle DEG$ is equilateral, DE = DG = GE = 3. Because $m \geq DEF = 90^{\circ}$, $\triangle DEF$ is a right triangle. Using the Pythagorean Theorem, $v = \sqrt{3^2 + 4^2} = 5$.

EXAMPLE 4

Solve a multi-step problem

Use the diagram to answer the questions.

a. What congruence postulate can you use to prove that $\triangle ABC \cong \triangle AED$?

- **b.** Explain why $\triangle ACD$ is equiangular.
- **c.** Show that $\triangle ABD \cong \triangle AEC$.

Solution

- **a.** You can see that $\overline{AB} \cong \overline{AE}$ and $\overline{BC} \cong \overline{ED}$. By the Base Angles Theorem, you know that $\geq B \cong \geq E$. So, by the SAS Congruence Postulate, $\triangle ABC \cong \triangle AED$.
- **b.** Because corresponding parts of congruent triangles are congruent, you know that $\geq ACB \cong \geq ADE$, and by the Congruent Supplements Theorem, $\geq ACD \cong \geq ADC$. So $m \geq ADC = m \geq ACD = 60^{\circ}$, and $m \geq CAD = 180^{\circ} 60^{\circ} 60^{\circ} = 60^{\circ}$, and $\triangle ACD$ is equiangular.
- **c.** From part (b) you know that $\triangle ACD$ is equiangular. So, $\ge ADB \cong \ge ACE$ and therefore $\triangle ABD \cong \triangle AEC$ by the AAS Congruence Postulate.

Exercises for Examples 3 and 4

- **3.** Find the values of *x* and *y* in the diagram at the right.
- **4.** In Example 4 above, show that $\triangle ABD \cong \triangle AEC$ using the SSS Congruence Postulate.

