Study Guide 5.2 Study Guide For use with pages 303–309

GOAL Use perpendicular bisectors to solve problems.

Vocabulary

A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a **perpendicular bisector.**

A point is **equidistant** from two figures if the point is the *same distance* from each figure.

Theorem 5.2 Perpendicular Bisector Theorem: In a plane, if a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Theorem 5.3 Converse of the Perpendicular Bisector Theorem: In a plane, if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

When three or more lines, rays, or segments intersect in the same point, they are called **concurrent** lines, rays, or segments. The point of intersection of the lines, rays, or segments is called the **point of concurrency.**

Theorem 5.4 Concurrency of Perpendicular Bisectors of a Triangle:

The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.

The point of concurrency of the three perpendicular bisectors of a triangle is called the **circumcenter** of the triangle.

EXAMPLE 1

Use the Perpendicular Bisector Theorem

\overrightarrow{KM} is the perpendicular bisector of \overrightarrow{JL} . Find JK.

Solution

$$JK = KL$$

Perpendicular Bisector Theorem

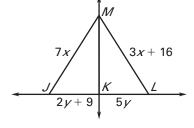
$$5y = 2y + 9$$

Substitute.

$$y = 3$$

Solve for *v*.

$$JK = 2(3) + 9 = 15$$

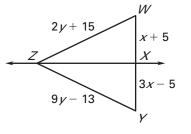


Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Exercises for Example 1

In the diagram \overrightarrow{XZ} , is the perpendicular bisector of \overrightarrow{WY} .

- **1.** Find *WZ*.
- **2.** Find *XY*.



LESSON 5.2

Study Guide continued For use with pages 303-309

Use perpendicular bisectors **EXAMPLE 2**

In the diagram shown, \overrightarrow{DC} is the perpendicular bisector of \overline{AB} and

 $\overline{AE}\cong \overline{BE}$.

- **a.** What segment lengths in the diagram are equal?
- **b.** Is E on \overrightarrow{DC} ?



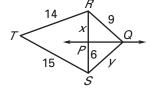
Solution

- **a.** \overrightarrow{DC} bisects \overrightarrow{AB} , so $\overrightarrow{CA} = \overrightarrow{CB}$. Because \overrightarrow{D} is on the perpendicular bisector of \overline{AB} , DA = DB by Theorem 5.2. Because $\overline{AE} \cong \overline{BE}$, AE = BE by definition of congruence.
- **b.** Because AE = BE, E is equidistant from A and B. So, by the Converse of the Perpendicular Bisector Theorem, E is on the perpendicular bisector of \overline{AB} , which is DC.

Exercises for Example 2

In the diagram, \overrightarrow{PQ} is the perpendicular bisector of \overline{RS} .

- **3.** What segment lengths in the diagram are equal? Explain your reasoning.
- **4.** Is T on \overrightarrow{PQ} ? Explain.



EXAMPLE 3

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Use the concurrency of perpendicular bisectors

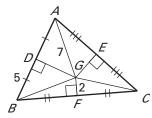
The perpendicular bisectors of $\triangle ABC$ meet at point G. Find GB.

Solution

Using Theorem 5.4, you know that point G is equidistant from the vertices of the triangle. So, GA = GB = GC.

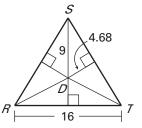
Theorem 5.4. GB = GA

GB = 7Substitute.



Exercise for Example 3

5. The perpendicular bisectos of $\triangle RST$ meet at point D. Find *DR*.



Geometry

27