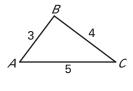
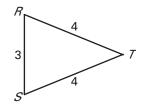
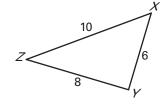
GOAL

Use the SSS and SAS Similarity Theorems.

Vocabulary


Theorem 6.2 Side-Side (SSS) Similarity Theorem: If the corresponding side lengths of two triangles are proportional, then the triangles are similar.


Theorem 6.3 Side-Angle-Side (SAS) Similarity Theorem: If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.


EXAMPLE 1

Use the SSS Similarity Theorem

Is either $\triangle RST$ or $\triangle XYZ$ similar to $\triangle ABC$?

Solution

Compare $\triangle ABC$ and $\triangle RST$ by finding ratios of corresponding side lengths.

$$\frac{AB}{RS} = \frac{3}{3} = 1 \qquad \qquad \frac{CA}{RT} = \frac{5}{4}$$

$$\frac{CA}{RT} = \frac{5}{4}$$

$$\frac{BC}{ST} = \frac{4}{4} = 1$$

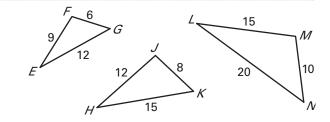
The ratios are not all equal, so $\triangle ABC$ and $\triangle RST$ are not similar.

Compare $\triangle ABC$ and $\triangle XYZ$ by finding ratios of corresponding side lengths.

Shortest sides

 $\frac{AB}{XY} = \frac{3}{6} = \frac{1}{2}$

Longest sides
$$\frac{CA}{ZX} = \frac{5}{10} = \frac{1}{2}$$


$$\frac{BC}{VZ} = \frac{4}{8} = \frac{1}{2}$$

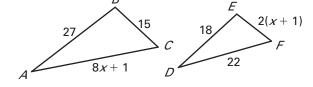
Remaining sides

All of the ratios are equal, so $\triangle ABC \sim \triangle XYZ$.

Exercise for Example 1

1. Which of the three triangles are similar? Write a similarity statement.

LESSON 6.5


Study Guide continued For use with pages 388-395

Use the SSS Similarity Theorem

Find the value of x that makes \triangle **ABC** $\sim \triangle$ **DEF**.

Solution

STEP 1 Find the value of x that makes corresponding side lengths proportional.

$$\frac{27}{18} = \frac{15}{2(x+1)}$$

Write proportion.

$$27 \cdot 2(x+1) = 18 \cdot 15$$

Cross Products Property

$$54x + 54 = 270$$

Simplify.

$$x = 4$$

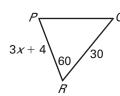
Solve for *x*.

STEP 2 Check that the side lengths are proportional when x = 4.

$$AC = 8x + 1 = 33$$
 $EF = 2(x + 1) = 10$

$$EF = 2(x+1) = 10$$

$$\frac{AB}{DE} = \frac{27}{18} = \frac{3}{2}$$
 $\frac{BC}{EF} = \frac{15}{10} = \frac{3}{2}$ $\frac{AC}{DF} = \frac{33}{22} = \frac{3}{2}$


$$\frac{BC}{EF} = \frac{15}{10} = \frac{3}{2}$$

$$\frac{AC}{DF} = \frac{33}{22} = \frac{3}{2}$$

When x = 4, the triangles are similar by the SSS Similarity Theorem.

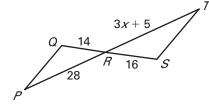
Use the SAS Similarity Theorem EXAMPLE 3

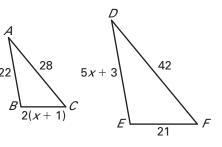
Find the value of x that makes \triangle *PQR* $\sim \triangle$ *TUV*.

Solution

Both $m \angle R$ and $m \angle V$ equal 60°, so $\angle R \cong \angle V$. Next, find the value of x

that makes the sides including these angles


proportional. Solving the proportion $\frac{3x+4}{20} = \frac{30}{24}$, you obtain x = 7. So, by the SAS Similarity Theorem, the triangles are similar when x = 7.


Exercises for Examples 2 and 3

Find the value of x that makes the triangles similar.

2.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

