Study Guide 6.6 Study Guide For use with pages 396–403

GOAL Use proportions with a triangle or parallel lines.

Vocabulary

Theorem 6.4 Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

Theorem 6.5 Converse of the Triangular Proportionality

Theorem: If a line divides the two sides of a triangle proportionally, then it is parallel to the third side.

Theorem 6.6: If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Theorem 6.7: If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

EXAMPLE 1 Find the length of a segment

In the diagram, $\overline{BE} \parallel \overline{CD}$, AB = 8, BC = 12, and ED = 9. What is the length of \overline{AE} ?

Solution

$$\frac{AE}{ED} = \frac{AB}{BC}$$
 Triangle Proportionality Theorem

$$\frac{AE}{9} = \frac{8}{12}$$
 Substitute.

$$AE = 6$$
 Solve for AE .

EXAMPLE 2 Determine whether line segments are parallel

In the diagram, \overrightarrow{PQ} divides sides \overrightarrow{LN} and \overrightarrow{MN} into the lengths shown. Determine whether $\overrightarrow{PQ} \parallel \overrightarrow{LM}$.

Solution

Find and simplify the ratios of lengths determined by \overline{PQ} .

$$\frac{LP}{PN} = \frac{18}{16} = \frac{9}{8} \qquad \qquad \frac{MQ}{QN} = \frac{27}{24} = \frac{9}{8}$$

Because $\frac{LP}{PN} = \frac{MQ}{QN}$, $\overline{PQ} \parallel \overline{LM}$ by the Converse of the Triangle Proportionality Theorem.

LESSON 6.6

Study Guide continued For use with pages 396–403

EXAMPLE3 Use Theorem 6.6

In the diagram, ≥ 1 , ≥ 2 , ≥ 3 , and ≥ 4 are all congruent and AB = 21, BC = 28, and EF = 32. Find the length of \overline{DE} .

Alternate interior angles are congruent, so $\ell \parallel m \parallel n$. Use Theorem 6.6.

$$\frac{AB}{BC} = \frac{DE}{EF}$$

Parallel lines divide transversals proportionally.

$$\frac{21}{28} = \frac{DE}{32}$$

Substitute.

$$DE = 24$$
 Solve for DE .

EXAMPLE 4 Use Theorem 6.7

In the diagram, \geq *ABD* \cong \geq *CBD*. Use the given side lengths to find the length of \overline{AD} .

Because \overrightarrow{BD} is an angle bisector of $\geq ABC$, you can apply Theorem 6.7. Let AD = x. Then DC = 33 - x.

$$\frac{DC}{AD} = \frac{BC}{BA}$$

Angle bisector divides opposite side proportionally.

$$\frac{33 - x}{x} = \frac{54}{45}$$

Substitute.

$$54x = 1485 - 45x$$

Cross Products Property

$$x = 15$$

Solve for *x*.

Exercises for Examples 1, 2, 3, and 4

1. Find the length of \overline{ST} .

2. Determine whether $\overline{MO} \parallel \overline{LP}$.

3. Find the value of x.

4. Find the value of x.

