GOAL Use a vector to translate a figure.

Vocabulary

An **image** is a new figure that is produced from the transformation of another figure.

A **preimage** is the original figure in the transformation of a figure.

An **isometry** is a transformation that preserves length and angle measure.

Theorem 9.1 Translation Theorem: A translation is an isometry.

A **vector** is a quantity that has both direction and magnitude, and is represented in the coordinate plane by an arrow drawn from one point to another.

The **initial point**, or starting point, of the vector below is F.

The **terminal point**, or ending point, of the vector below is G.

horizontal component

The **component form of a vector** combines the horizontal and vertical components. The component form of \overrightarrow{FG} is $\langle 5, 3 \rangle$.

EXAMPLE 1

Translate a figure in the coordinate plane

Graph quadrilateral *ABCD* with vertices A(-3, 4), B(-3, 7), C(2, 8), and D(2, 4). Find the image of each vertex after the translation $(x, y) \rightarrow (x + 4, y - 3)$. Then, graph the image using prime notation.

Solution

STEP 1 Draw quadrilateral *ABCD*.

STEP 2 Find the translation of each vertex by adding 4 to its *x*-coordinate and subtracting 3 from its *y*-coordinate.

$$(x, y) \rightarrow (x + 4, y - 3)$$

$$A(-3, 4) \rightarrow A'(1, 1)$$

$$B(-3,7) \to B'(1,4)$$

$$C(2, 8) \rightarrow C'(6, 5)$$

$$D(2, 4) \rightarrow D'(6, 1)$$

STEP 3 Graph the image.

LESSON 9.1 **Study Guide** continued For use with pages 572–579

EXAMPLE 2 Write a rule for the translation

Write a rule for the translation of \triangle *ABC* to \triangle *A'B'C'*.

Solution

To go from A to A', move 3 units right and 2 units down. So, a rule for the translation is $(x, y) \rightarrow (x + 3, y - 2)$.

Exercises for Examples 1 and 2

- **1.** Draw $\triangle RST$ with vertices R(1, 1), S(4, 1), and T(2, 4). Find the image of each vertex after the translation $(x, y) \rightarrow (x + 2, y 3)$. Graph the image using prime notation.
- **2.** The image of $(x, y) \rightarrow (x + 5, y 6)$ is $\overline{P'Q'}$ with endpoints P'(-2, 5) and Q'(3, 2). Find the coordinates of the endpoints of the preimage.
- **3.** In Example 2, write a rule to translate $\triangle A'B'C'$ to $\triangle ABC$.

EXAMPLE 3 Identify vector components

Name the vector and write its component form.

Solution

The vector is \overline{AB} . From initial point A to terminal point B, you move 7 units right and 5 units down. So, the component form is $\langle 7, -5 \rangle$.

EXAMPLE 4 Use a vector to translate a figure

The vertices of \triangle ABC are A(2, 5), B(4, 6), and C(3, 2). Translate \triangle ABC using the vector $\langle 3, -4 \rangle$.

Solution

First, graph $\triangle ABC$. Use $\langle 3, -4 \rangle$ to move each vertex 3 units to the right and 4 units down. Label the image vertices. Draw $\triangle A'B'C'$.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company

Exercises for Examples 3 and 4

- **4.** Name the vector and write its component form.
- **5.** The vertices of $\triangle LMN$ are L(3, 3), M(6, 4), and N(10, 2). Translate $\triangle LMN$ using the vector $\langle -3, 5 \rangle$.

