Study Guide 9.3 Study Guide For use with pages 588–596

GOAL Reflect a figure in any given line.

Vocabulary

A **reflection** is a transformation that uses a line like a mirror to reflect an image.

A **line of reflection** is a line that acts like a mirror to reflect an image.

Theorem 9.2 Reflection Theorem: A reflection is an isometry.

EXAMPLE 1 Gr

Graph reflections in horizontal and vertical lines

The vertices of \triangle ABC are A(2, 4), B(6, 3), and C(3, 2). Graph the reflection of \triangle ABC described.

a. In the line n: x = 1

Solution

Point A is 1 unit to the right of n, so its reflection A' is 1 unit to the left of n at (0, 4). Also, B' is 5 units left of n at (-4, 3), and C' is 2 units left of n at (-1, 2).

b. In the line m: y = 3

Solution

Point A is 1 unit above m, so its reflection A' is 1 unit below m at (2, 2). Also, B' is on m at (6, 3), and C' is 1 unit above m at (3, 4).

Exercises for Example 1

The vertices of \triangle ABC are A(2, 4), B(6, 3), and C(3, 2). Graph the reflection of \triangle ABC in the given line.

1.
$$v = 5$$

2.
$$x = -2$$

3.
$$y = -1$$

esson 9.3

Study Guide continued For use with pages 588–596

EXAMPLE 2 Graph a reflection in y = x

The endpoints of \overline{FG} are F(-2, 1) and G(2, 3). Reflect the segment in the line y = x. Graph \overline{FG} and its image.

Solution

Use the coordinate rule for reflecting in y = x.

$$(a, b) \to (b, a)$$

 $F(-2, 1) \to F'(1, -2)$
 $G(2, 3) \to G'(3, 2)$

EXAMPLE 3

Use matrix multiplication to reflect a polygon

The vertices of $\triangle DEF$ are D(2, 3), E(4, 4), and F(5, 1). Find the reflection of $\triangle DEF$ in the *y*-axis using matrix multiplication. Graph $\triangle DEF$ and its image.

Solution

STEP 1 Multiply the polygon matrix by the matrix for a reflection in the *y*-axis.

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -1(2) + 0(3) & -1(4) + 0(4) & -1(5) + 0(1) \\ 0(2) + 1(3) & 0(4) + 1(4) & 0(5) + 1(1) \end{bmatrix}$$
$$= \begin{bmatrix} D' & E' & F' \\ -2 & -4 & -5 \\ 3 & 4 & 1 \end{bmatrix}$$

STEP 2 Graph $\triangle DEF$ and $\triangle D'E'F'$.

Exercises for Examples 2 and 3

- **4.** Graph $\triangle ABC$ with vertices A(4, 2), B(5, 6), and C(7, 3). Reflect $\triangle ABC$ in the line y = x. Graph the image.
- **5.** The vertices of $\triangle LMN$ are L(-4, 2), M(0, 1), and N(-3, -1). Find the reflection of $\triangle LMN$ in the *x*-axis using matrix multiplication.