Study Guide 9.5 Study Goide For use with pages 607–615

GOAL Perform combinations of two or more transformations.

Vocabulary

A **glide reflection** is a transformation in which every point P is mapped to a point P'' by the following steps. (1) A translation maps P to P'. (2) A reflection in a line k parallel to the direction of the translation maps P' to P''.

A **composition of transformations** is the result of two or more transformations that are combined to form a single transformation.

Theorem 9.4 Composition Theorem: The composition of two (or more) isometries is an isometry.

Theorem 9.5 Reflections in Parallel Lines Theorem: If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation. If P'' is the image of P, then:

- 1. $\overline{PP''}$ is perpendicular to k and m, and
- 2. PP'' = 2d, where d is the distance between k and m.

Theorem 9.6 Reflections in Intersecting Lines Theorem: If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a rotation about point P. The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed by k and m.

EXAMPLE 1

Find the image of a glide reflection

The vertices of \triangle ABC are A(4, 3), B(7, 4), and C(8, 2). Find the image of \triangle ABC after the glide reflection.

Translation: $(x, y) \rightarrow (x - 11, y)$

Reflection: in the *x*-axis

Solution

Begin by graphing $\triangle ABC$. Then, graph $\triangle A'B'C'$ after a translation 11 units left. Finally, graph $\triangle A''B''C''$ after a reflection in the *x*-axis.

Exercises for Example 1

- **1.** Suppose $\triangle ABC$ in Example 1 is translated 5 units down, then reflected in the *y*-axis. What are the coordinates of the vertices of the image?
- **2.** In Example 1, describe a glide reflection from $\triangle A''B''C''$ to $\triangle ABC$.

EXAMPLE 2 Find the image of a composition

The endpoints of \overline{RS} are R(2, -4) and S(3, -7). Graph the image of \overline{RS} after the composition.

Reflection: in the *y*-axis **Rotation:** 90° about the origin

Solution

Graph \overline{RS} . Reflect \overline{RS} in the *y*-axis. $\overline{R'S'}$ has endpoints R'(-2, -4) and S'(-3, -7). Rotate $\overline{R'S'}$ 90° about the origin. $\overline{R''S''}$ has endpoints R''(4, -2) and S''(7, -3).

EXAMPLE 3 Use Theorem 9.5

In the diagram, a reflection in line k maps \overline{GH} to $\overline{G'H'}$. A reflection in line m maps $\overline{G'H'}$ to $\overline{G''H''}$. Also, HB=10 and DH''=5.

- **a.** Name any segments congruent to each segment: \overline{HG} , \overline{HB} , \overline{GA} .
- **b.** Does AC = BD? Explain.
- **c.** What is the length of $\overline{GG''}$?

Solution

- **a.** $\overline{HG}\cong \overline{H'G'}, \overline{HG}\cong \overline{H''G''}, \overline{HB}\cong \overline{H'B}, \overline{GA}\cong \overline{G'A}$
- **b.** Yes, AC = BD because $\overline{GG''}$ and $\overline{HH''}$ are perpendicular to both k and m, so \overline{BD} and \overline{AC} are opposite sides of a rectangle.
- **c.** By the properties of reflections, H'B = 10 and H'D = 5. Theorem 9.5 implies that $GG'' = HH'' = 2 \cdot BD$, so the length of $\overline{GG''}$ is 2(10 + 5), or 30 units.

Exercises for Examples 2 and 3

- **3.** Graph \overline{RS} from Example 2. Do the rotation first, followed by the reflection. Does the order of the transformations matter? *Explain*.
- **4.** In Example 3 part (c), explain how you know that GG'' = HH''.
- **5.** In Example 3, \overline{HG} is reflected in line k, then in line m. Describe a single transformation that maps HG to $\overline{H''G''}$.
- **6.** In Example 3, the distance between line k and m is 15 units. What is the distance between H and H''? If you draw $\overline{HH'}$, what is the relationship with line k?

Chapter 9 Resource Book