Study Guide 9.7 Study Guide For use with pages 625–633

GOAL Use drawing tools and matrices to draw dilations.

Vocabulary

Scalar multiplication is the process of multiplying each element of a matrix by a real number or scalar.

A **dilation** is a transformation in which the original figure and its image are similar.

A **reduction** is a dilation that has a scale factor that lies between 0 and 1.

An **enlargement** is a dilation that has a scale factor greater than 1.

EXAMPLE 1 Identify dilations

Find the scale factor of the dilation. Then, tell whether the dilation is a *reduction* or an *enlargement*.

a.

b.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Solution

a. Because $\frac{CP'}{CP} = \frac{10}{6}$, the scale factor is $k = \frac{5}{3}$.

The image P' is an enlargement.

b. Because $\frac{CP'}{CP} = \frac{24}{40}$, the scale factor is $k = \frac{3}{5}$.

The image P' is a reduction.

EXAMPLE 2 Scalar multiplication

Simplify the product $3\begin{bmatrix} 4 & 1 & 2 \\ 1 & -2 & -3 \end{bmatrix}$.

Solution

$$3\begin{bmatrix} 4 & 1 & 2 \\ 1 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 3(4) & 3(1) & 3(2) \\ 3(1) & 3(-2) & 3(-3) \end{bmatrix}$$
 Multiply each element in the matrix by 3.
$$= \begin{bmatrix} 12 & 3 & 6 \\ 3 & -6 & -9 \end{bmatrix}$$
 Simplify.

LESSON 9.7

Study Guide continued For use with pages 625–633

Exercises for Examples 1 and 2

1. In a dilation, CP' = 32 and CP = 8. Tell whether the dilation is a *reduction* or an *enlargement* and find its scale factor.

Simplify the product.

2.
$$6 \begin{bmatrix} 7 & 4 & 3 \\ -3 & 0 & -5 \end{bmatrix}$$

3.
$$-5\begin{bmatrix} -3 & 2 & 6 \\ 8 & -9 & 1 \end{bmatrix}$$

EXAMPLE 3

Use scalar multiplication in a dilation

The vertices of a quadrilateral *KLMN* are K(-8, 12), L(-4, 12), M(-4, 4), and N(-8, 4). Use scalar multiplication to find the image of *KLMN* after a dilation with its center at the origin and a scale factor of $\frac{1}{4}$. Graph *KLMN* and its image.

Solution

$$\frac{1}{4} \begin{bmatrix}
 K & L & M & N \\
 -8 & -4 & -4 & -8 \\
 12 & 12 & 4 & 4
\end{bmatrix} = \begin{bmatrix}
 K' & L' & M' & N' \\
 -2 & -1 & -1 & -2 \\
 3 & 3 & 1 & 1
\end{bmatrix}$$

EXAMPLE 4

Find the image of a composition

The vertices of \triangle ABC are A(-3, 2), B(-1, 3), and C(-1, 2). Find the image of \triangle ABC after the given composition.

Translation: $(x, y) \rightarrow (x + 3, y - 1)$

Dilation: centered at the origin with a scale factor of 3

Solution

Graph the preimage $\triangle ABC$. Translate $\triangle ABC$ 3 units to the right and 1 unit down. Label it $\triangle A'B'C'$. Dilate using the origin as the center and a scale factor of 3 to find $\triangle A''B''C''$.

Exercises for Examples 3 and 4

- **4.** The vertices of $\triangle RST$ are R(-2, 0), S(0, -1), and T(0, 0). Use scalar multiplication to find the vertices of $\triangle R'S'T'$ after a dilation with its center at the origin and a scale factor of 4.
- **5.** A segment has the endpoints C(-2, 2) and D(2, 2). Find the image of \overline{CD} after a 180° rotation about the origin followed by a dilation with its center at the origin and a scale factor of $\frac{1}{2}$.