Use the diagram to name the included angle between the given pair of sides. **1.** \overline{AB} and \overline{BC} **2.** \overline{BC} and \overline{CD} **3.** \overline{AB} and \overline{BD} **4.** \overline{BD} and \overline{DA} **5.** \overline{DA} and \overline{AB} **6.** \overline{CD} and \overline{DB} Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate. **7.** $\triangle MAE$, $\triangle TAE$ **9.** $\triangle JRM$, $\triangle JTM$ Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate or theorem you would use. **10.** $\triangle ABC$, $\triangle DEF$ **12.** $\triangle ABC$, $\triangle ADC$ State the third congruence that must be given to prove that \triangle *JRM* \cong \triangle *DFB* using the indicated postulate. **13.** GIVEN: $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, $\underline{?} \cong \underline{?}$ Use the SSS Congruence Postulate. **15. GIVEN:** $\overline{RM} \cong \overline{FB}, \geq J$ is a right angle and $\geq J \cong \geq D, \underline{?} \cong \underline{?}$ Use the HL Congruence Theorem. LESSON 4.4 ## Practice B continued For use with pages 240–247 **16. Proof** Complete the proof. **GIVEN:** *B* is the midpoint of \overline{AE} . *B* is the midpoint of \overline{CD} . **PROVE:** $\triangle ABD \cong \triangle EBC$ ## StatementsReasons1. B is the midpoint of \overline{AE} .1. _ ? _2. _ ? _2. Definition of midpoint3. B is the midpoint of \overline{CD} .3. _ ? _4. _ ? _4. Definition of midpoint5. $\geq ABD \cong \geq EBC$ 5. _ ? _6. $\triangle ABD \cong \triangle EBC$ 6. _ ? _ **17. Proof** Complete the proof. **GIVEN:** $\overline{AB} \parallel \overline{CD}, \overline{AB} \cong \overline{CD}$ **PROVE:** $\triangle ABC \cong \triangle DCB$ | Statements | Reasons | |---|---------------| | 1. $\overline{AB} \parallel \overline{CD}$ | 1. _ ? | | 2. $\geq ABC \cong \geq DCB$ | 2. _ ? | | 3. $\overline{AB} \cong \overline{CD}$ | 3. _ ? | | 4. $\overline{CB} \cong \overline{CB}$ | 4. _ ? | | 5. $\triangle ABC \cong \triangle DCB$ | 5. _ ? |