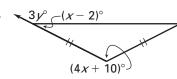
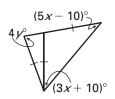
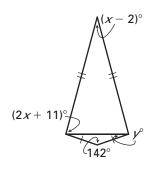
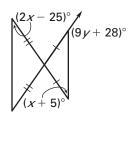

For use with pages 264-270

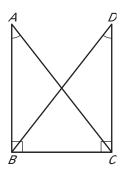

Find the values of x and y.

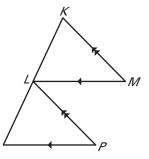

1.
$$\sqrt{(3x-11)^\circ}$$
 $(2x+1)$

 $(2x + 11)^{\circ}$


2.



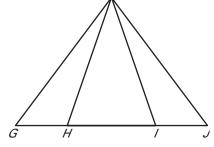

5.



Decide whether enough information is given to prove that the triangles are congruent. Explain your answer.

7.

8.


In Exercises 9 and 10, complete the proof.

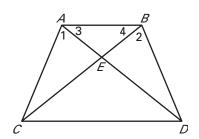
9. GIVEN: $\overline{FG} \cong \overline{FJ}$, $\overline{HG} \cong \overline{IJ}$

PROVE: $\overline{HF} \cong \overline{IF}$

I ROVE. III' = II'	
Statements	Reasons
1. $\overline{FG} \cong \overline{FJ}$	1 ?
2 ?	2. Base Angles Theorem
3. $\overline{HG}\cong \overline{IJ}$	3 ?_

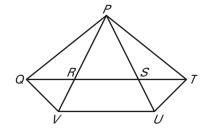
4. SAS Congruence Postulate

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.


5. $\overline{HF}\cong\overline{IF}$

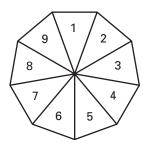
Practice B continued For use with pages 264–270

10. GIVEN: $\angle 1 \cong \angle 2$, $\overline{AC} \cong \overline{BD}$


PROVE: $\angle 3 \cong \angle 4$

Statements	Reasons
1. ∠1 ≅ ∠2	1 ?
2. $\overline{AC} \cong \overline{BD}$	2. <u>?</u>
3. $\angle AEC \cong \angle BED$	3. <u>?</u>
4. <u>?</u>	4. AAS Congruence Theorem
5. $\overline{AE} \cong \overline{BE}$	5. <u>?</u>
6. ∠3 ≅ ∠4	6. <u>?</u>

In Exercises 11–16, use the diagram. Complete the statement. Tell what theorem you used.


- **11.** If $\overline{PQ} \cong \overline{PT}$, then \angle ? \cong \angle ?.
- **12.** If $\angle PQV \cong \angle PVQ$, then $\underline{?} \cong \underline{?}$.
- **13.** If $\overline{RP} \cong \overline{SP}$, then \angle ? \cong \angle ?.
- **14.** If $\overline{TP} \cong \overline{TR}$, then \angle ? \cong \angle ?.
- **15.** If $\angle PSQ \cong \angle SPQ$, then $\underline{?} \cong \underline{?}$.
- **16.** If $\angle PUV \cong \angle PVU$, then $? \cong ?$.

In Exercises 17–19, use the following information.

Prize Wheel A radio station sets up a prize wheel when they are out promoting their station. People spin the wheel and receive the prize that corresponds to the number the wheel stops on. The 9 triangles in the diagram are isosceles triangles with congruent vertex angles.

- **17.** The measure of the vertex angle of triangle 1 is 40° . Find the measures of the base angles.
- **18.** Explain how you know that triangle 1 is congruent to triangle 6.

19. Trace the prize wheel. Then form a triangle whose vertices are the midpoints of the bases of the triangles 1, 4, and 7. What type of triangle is this?