LESSON 4.8 Practice B For use with pages 271–279

Name the type of transformation shown.

1.

2.

3.

4. Figure ABCD has vertices A(1, 2), B(4, -3), C(5, 5), and D(4, 7). Sketch ABCD and draw its image after the translation $(x, y) \rightarrow (x + 5, y + 3)$.

5. Figure ABCD has vertices A(-2, 3), B(1, 7), C(6, 2), and D(-1, -2). Sketch ABCD and draw its image after the translation $(x, y) \rightarrow (x - 2, y - 4)$.

6. Figure *ABCD* has vertices A(3, -1), B(6, -2), C(5, 3), and D(0, 4). Sketch *ABCD* and draw its image after the translation $(x, y) \rightarrow (x - 3, y + 2)$.

7. Figure ABCD has vertices A(-1, 3), B(4, -1), C(6, 4), and D(1, 5). Sketch ABCD and draw its image after the translation $(x, y) \rightarrow (x + 4, y - 5)$.

Use coordinate notation to describe the translation.

- **8.** 3 units to the right, 5 units down
 -
- **9.** 7 units to the left, 2 units down

10. 4 units to the left, 6 units up

11. 1 unit to the right, 8 units up

LESSON 4.8

Practice B continued For use with pages 271-279

Use a reflection in the y-axis to draw the other half of the figure.

12.

13.

14.

Use the coordinates to graph \overline{AB} and \overline{CD} . Tell whether \overline{CD} is a rotation of AB about the origin. If so, give the angle and direction of rotation.

15.
$$A(-2,5), B(-2,0), C(0,1), D(3,1)$$

16.
$$A(1, 4), B(4, 1), C(1, -4), D(4, -1)$$

Complete the statement using the description of the translation. In the description, points (2, 0) and (3, 4) are two vertices of a triangle.

- **17.** If (2, 0) translates to (4, 1), then (3, 4) translates to $\underline{?}$.
- **18.** If (2, 0) translates to (-2, -1), then (3, 4) translates to $\underline{?}$.

A point on an image and the translation are given. Find the corresponding point on the original figure.

- **19.** Point on image: (2, -4); translation: $(x, y) \rightarrow (x 4, y + 3)$
- **20.** Point on image: (-5, -7); translation: $(x, y) \rightarrow (x, -y)$
- **21.** Verifying Congruence Verify that $\triangle DEF$ is a congruence transformation of $\triangle ABC$. Explain your reasoning.

