Is either \triangle *LMN* or \triangle *RST* similar to \triangle *ABC*?

1.

8 6 M 8 N

2.

M 5 N 4.5

Determine whether the two triangles are similar. If they are similar, write a similarity statement and find the scale factor of $\triangle A$ to $\triangle B$.

3.

Not drawn to scale

4.

5. Algebra Find the value of *m* that makes $\triangle ABC \sim \triangle DEF$ when AB = 3, BC = 4, DE = 2m, EF = m + 5, and $\angle B \cong \angle E$.

Show that the triangles are similar and write a similarity statement. *Explain* your reasoning.

6.

7.

LESSON 6.5 **Practice B** continued For use with pages 388–395

- **8. Multiple Choice** In the diagram at the right, $\triangle ACE \sim \triangle DCB$. Find the length of AB.
 - **A.** 12

B. 18

c. $\frac{35}{2}$

D. $\frac{30}{7}$

Sketch the triangles using the given description. *Explain* whether the two triangles can be similar.

- **9.** The side lengths of $\triangle ABC$ are 8, 10 and 14. The side lengths of $\triangle DEF$ are 16, 20 and 26.
- **9.** The side lengths of $\triangle ABC$ are 8, 10 and 14. **10.** In $\triangle ABC$, AB = 15, BC = 24 and $m \angle B = 38^{\circ}$.

In $\triangle DEF$, DE = 5, EF = 8 and $m \angle E = 38^{\circ}$.

In Exercises 11–14, use the diagram at the right to copy and complete the statement.

11.
$$\triangle ABC \sim ?$$

13.
$$AB =$$
 ?

14.
$$m \angle CAB + m \angle ABC = \underline{?}$$

In Exercises 15 and 16, use the following information.

Pine Tree In order to estimate the height h of a tall pine tree, a student places a mirror on the ground and stands where she can see the top of the tree, as shown. The student is 6 feet tall and stands 3 feet from the mirror which is 11 feet from the base of the tree.

- **15.** What is the height h (in feet) of the pine tree?
- **16.** Another student also wants to see the top of the tree. The other student is 5.5 feet tall. If the mirror is to remain 3 feet from the student's feet, how far from the base of the tree should the mirror be placed?

