Use the diagram to write a matrix to represent the polygon.

- **1.** △*CDE*
- **2.** △*ABF*
- **3.** Quadrilateral BCEF
- **4.** Hexagon *ABCDEF*



## Add or subtract.

7. 
$$\begin{bmatrix} 5 & -2 \\ 2 & 4 \\ -7 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 6 & -4 \\ 6 & -1 \end{bmatrix}$$

**9.** 
$$\begin{bmatrix} -1 & -9 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 9 \\ -6 & -7 \end{bmatrix}$$

**6.** 
$$\begin{bmatrix} -8 & 4 \\ 4 & -5 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ 6 & -1 \end{bmatrix}$$

**8.** 
$$\begin{bmatrix} -0.3 & 1.8 \end{bmatrix} - \begin{bmatrix} 0.6 & 2.7 \end{bmatrix}$$

**10.** 
$$\begin{bmatrix} 1.4 & 1.3 \\ -5 & -6.5 \\ 2 & 4 \end{bmatrix} - \begin{bmatrix} -1.4 & -3 \\ 3.9 & 4 \\ 1.3 & 3.9 \end{bmatrix}$$

Find the image matrix that represents the translation of the polygon. Then graph the polygon and its image.

11. 
$$\begin{bmatrix} -1 & 5 & 3 \\ 2 & 2 & 6 \end{bmatrix}$$
; 5 units right and 3 units down



**12.** 
$$\begin{bmatrix} 3 & 7 & 5 & 1 \\ 1 & 2 & 6 & 5 \end{bmatrix}$$
; 6 units left and 2 units up



## Multiply.

**13.** 
$$\begin{bmatrix} 4 & -3 \end{bmatrix} \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$

**14.** 
$$\begin{bmatrix} -0.8 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1.6 \end{bmatrix}$$

**13.** 
$$\begin{bmatrix} 4 & -3 \end{bmatrix} \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$
 **14.**  $\begin{bmatrix} -0.8 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1.6 \end{bmatrix}$  **15.**  $\begin{bmatrix} -2 & 3 \\ 5 & -4 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 7 & 5 \end{bmatrix}$ 

**16.** 
$$\begin{bmatrix} 0.9 & 5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -4 & -3 \end{bmatrix}$$

**16.** 
$$\begin{bmatrix} 0.9 & 5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -4 & -3 \end{bmatrix}$$
 **17.**  $\begin{bmatrix} -3 & 2 & 6 \end{bmatrix} \begin{bmatrix} -5 \\ 0 \\ -3 \end{bmatrix}$  **18.**  $\begin{bmatrix} 2 & 5 & 5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -4 \\ 2 \end{bmatrix}$ 

**18.** 
$$\begin{bmatrix} 2 & 5 & 5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -4 \\ 2 \end{bmatrix}$$

9.2

**Practice B** continued For use with pages 580–587

Use the described translation and the graph of the image to find the matrix that represents the preimage.

**19.** 3 units right and 4 units up



**20.** 2 units left and 3 units down



**21. Matrix Equation** Use the description of a triangle to find the value of each variable. What are the coordinates of the vertices of the image triangle?

$$\begin{bmatrix} -8 & x & -8 \\ 4 & 4 & y \end{bmatrix} + \begin{bmatrix} -2 & b & c \\ d & -5 & 2 \end{bmatrix} = \begin{bmatrix} r & -4 & -3 \\ 7 & s & 6 \end{bmatrix}$$

**22. Office Supplies** Two offices submit supply lists. A weekly planner costs \$8, a chairmat costs \$90, and a desk tray costs \$5. Use matrix multiplication to find the total cost of supplies for each office.

Office 1
15 weekly planners
5 chair mats
20 desk trays

Office 2
25 weekly planners
6 chair mats
30 desk trays

**23. School Play** The school play was performed on three evenings. The attendance on each evening is shown in the table. Adult tickets sold for \$5 and student tickets sold for \$3.50.

| Night  | Adults | Students |
|--------|--------|----------|
| First  | 340    | 250      |
| Second | 425    | 360      |
| Third  | 440    | 390      |

- **a.** Use matrix addition to find the total number of people that attended each night of the school play.
- **b.** Use matrix multiplication to find how much money was collected from all tickets each night.